The Ni-Pd-Si (Nickel-Palladium-Silicon) System

K.P. Gupta, The Indian Institute of Metals

Introduction

Only one isothermal section for the Ni-Pd-Si system has been established and is reported here.

Binary Systems

The Ni-Pd system [Massalski2] (Fig. 1) is an isomorphous system with a minimum of 1237 °C at ~45 at.% Pd.

The Ni-Si system [Massalski2] (Fig. 2) has eight intermediate phases—Ni₃Si (β_1), Ni₃Si (β_2 and β_3), Ni₃₁Si₁₂ (γ') , Ni₂Si (δ), Ni₂Si (θ), Ni₃Si₂ (ϵ and ϵ'), NiSi (ξ), and NiSi₂ (α and β)—of which several phases, Ni₃Si (β_2 and β_3), Ni₃Si₂ (ϵ and ϵ'), and NiSi₂ (α and β) exist in polymorphic forms with polymorphic transition temperatures of ~1165, 830, and 981 °C, respectively. The γ' , θ , and ξ phases melt congruently at 1242, 1306, and 992 °C, respectively. The β_1 , β_3 , δ , ϵ' , and ζ phases form through peritectic or peritectoid reactions: $L + \gamma' \leftrightarrow \beta_3$ at 1178 °C, L + $\theta \leftrightarrow \delta$ at 1255 °C, L + (Si) $\leftrightarrow \zeta'$ at 993 °C, $\gamma + \beta_2 \leftrightarrow \beta_1$ at 1035 °C, and $\theta + \xi \leftrightarrow \epsilon$ at 845 °C. γ is the fcc terminal solid solution (Ni). There are nine eutectic or eutectoid reactions in the Ni-Si system: $L \leftrightarrow \gamma + \beta_3$ at 1145 °C, $L \leftrightarrow \gamma' + \delta$ at 1215 °C, L $\leftrightarrow \theta$ + ξ at 964 °C, L $\leftrightarrow \zeta$ + ξ at 966 °C, $\beta_2 \leftrightarrow$ $\beta_1 + \gamma'$ at 990 °C, $\theta \leftrightarrow \delta + \epsilon$ at 825 °C, $\epsilon' \leftrightarrow \delta + \epsilon$ at 820 °C, $\epsilon \leftrightarrow \epsilon' + \xi$ at 800 °C, and $\epsilon \leftrightarrow \epsilon' + \delta$ at 820 °C. The γ' , δ , ξ , and ζ phases are single composition phases.

The Pd-Si system [Massalski2] (Fig. 3) has five intermediate phases—PdSi (ξ), Pd₂Si (ρ), Pd₃Si (π), Pd₉Si₂ (κ), and Pd₅Si (η). The ρ , π , and η phases melt congruently at 1394, 1070, and 835 °C, respectively. A polymorphic form of Pd₂Si phase, Pd₂Si' (ρ'), forms through a peritectic reaction $\rho + L \leftrightarrow \rho'$ at 1090 °C. The PdSi (ξ) and Pd₉Si₂ (κ) phases form through peritectic reactions L + $\rho \leftrightarrow \xi$ at 900 °C and L + $\xi \leftrightarrow \kappa$ at 823 °C. The ξ , κ , and η phases exist only at the high temperatures and undergo eutectoid transformations: $\xi \leftrightarrow \rho'$ + (Si) at 824 °C, $\kappa \leftrightarrow \eta + \pi$ at 772 °C, and $\eta \leftrightarrow \pi$ + (Pd) at 727 °C. There are four eutectic reactions: L \leftrightarrow (Pd) + η at 821 °C, L $\leftrightarrow \eta$ + κ at \approx 820 °C, L $\leftrightarrow \pi + \rho$ at 1050 °C, and L $\leftrightarrow \xi$ + (Si) at 892 °C.

Binary and Ternary Phases

The three binary systems Ni-Pd, Pd-Si, and Ni-Si have 11 intermediate phases with several phases of the Ni-Si system having polymorphic forms. In the Ni-Pd-Si system, existence of two ternary intermediate phases, $Ni_{18}Pd_7Si_9$ and NiPd₂Si, have been reported. The binary and ternary phases of the Ni-Pd-Si system and their structure data are given in Table 1.

Fig. 1 Ni-Pd binary phase diagram [Massalski2]

Fig. 2 Ni-Si binary phase diagram [Massalski2]

Fig. 3 Pd-Si binary phase diagram [Massalski2]

Fig. 4 800 °C isothermal section of Ni-Pd-Si system

Phase designation	Composition, at.%	Pearson's symbol	Space group	Туре	Lattice parameter, nm		
					а	b	с
γ	(Ni), (Pd) (Ni, Pd)	cF4	Fm3m	Cu			
(Si)	(Si)	cF8	$Fd\bar{3}m$	C (Diamond)			
β_1	Ni ₃ Si (22.8-24.5)	cP4	Pm3m	AuCu ₃	0.350		
β_2	Ni ₃ Si (24.5-25.5)	<i>mC</i> 16		GePt ₃	0.697	0.625	0.507
						$\beta~=~48.74^{\circ}$	
β_3	Ni ₃ Si (24.5-25.5)	mC16			0.704	0.626	0.508
						$\beta~=~48.84^{\circ}$	
γ'	Ni ₃₁ Si ₁₂	hP43	P321	Ni ₃₁ Si ₁₂	0.667		1.228
δ	Ni ₂ Si (33.3)	oP12	Pnma	Co ₂ Si	0.706	0.499	0.372
E	Ni ₂ Si (33.4-41.0)	hP6	$P6_3/m$	Ni ₂ Si	0.3805		0.489
e	Ni ₃ Si ₂	oP8					
ε′	Ni ₃ Si ₂						
ξ	NiSi	oP8	Pnma	MnP	0.562	0.518	0.334
ζ	NiSi ₂	cF12	$Fm\bar{3}m$	CaF_2	0.5406		
ζ'	NiSi ₂						
η	Pd _s Si						
к	Pd_qSi_2						
π	Pd ₃ Si	oP16	Pnma	cFe_3	0.5735	0.7555	0.5260
ρ	Pd ₂ Si	hP9	$P\bar{6}2m$	Fe ₂ P	0.6496		0.3433
ρ′	Pd_2Si'						
ξ	PdSi	oP8	Pnma	MnP	0.56173	0.33909	0.61534
Δ	NiPd ₂ Si						
Г	Ni18Pd7Si9			Pd ₂₅ Ge	0.6835		0.9916

Table 1 I	Phases of	the	Ni-Pd-Si	system	and	their	structure	data
-----------	-----------	-----	----------	--------	-----	-------	-----------	------

Fig. 5 Lattice parameter of $Pd_{50-x}Ni_xSi_{50}$ alloys (annealed at 900 °C) as a function of Ni content *x*

Ternary System

An isothermal section of the Ni-Pd-Si system has been established at 800 °C by [1976Wop]. Pure component elements, (99.9 mass %), sealed in evacuated quartz capsules, were melted in a high-frequency induction furnace. Alloys with >40 at.% Si were, however, arc melted. The alloys were prepared between 20 and 65 at.% Si. The alloys sealed in evacuated quartz capsules were annealed for 2 d at 800 °C and water quenched. The annealed alloys were crushed to prepare powder for x-ray diffraction (XRD) work. The powder of the alloys was again annealed at 800 °C for 1 d before taking XRD patterns. The phase analysis of the alloys was done using an XRD method only.

The 800 °C isothermal section of the Ni-Pd-Si system, in a slightly modified form, is shown in Fig. 4. The alloys along the NiSi-PdSi line showed complete solid solubility of the NiSi and PdSi phases (ξ) in each other, characteristic of an isomorphous pseudobinary system. Lattice parameter data are shown in Fig. 5.

The Pd₂Si (ρ) phase was found to extend into the ternary up to ~50 at.% Ni along the A_2B stoichiometric line. Lattice parameter data are shown in Fig. 6. Along the Pd₃Si (π) and Ni₃₁Si₁₂ (γ') line two ternary intermediate phases, NiPd₂Si (Δ) and Ni₁₈Pd₇Si₉ (Γ), were found to exist as small regions. The Pd₃Si and Ni₃₁Si₁₂ phases were found to extend up to ~9 at.% Ni and ~7 at.% Pd, respectively. The Ni₃Si₂ (ϵ) phase was also found to extend into the ternary up to ~7

Fig. 6 Lattice parameter of $Pd_{66,7-x}Ni_xSi_{33,3}$ alloys (annealed at 900 °C) as a function of Ni content *X*

at.% Pd. All the other phases Ni₃Si (β_1), Ni₂Si (δ), and NiSi₂ (ζ) were found to have only very limited extensions (<3 at.% Pd) into the ternary. The Γ phase was found in equilibrium with the γ , β , γ' , ρ , and Δ phases. The Δ phase was found in equilibrium with the γ , Γ , ρ , and π phases.

[1976Wop] have shown in their isothermal section that the binary phases have a solubility range of 2 to 3 at.%. For example, the NiSi and the PdSi phases are single composition (MSi) phases, but are shown to be within ~2 at.% solubility range, and accordingly the ξ phase region in the ternary has been shown to be ~ 2 at.% wide. Because all the ξ phase alloys were melted along the stoichiometric line between NiSi and PdSi and only XRD was used for phase identification, the ξ phase boundary given by [1976Wop] (dash-dot line in Fig. 4) is rather doubtful. Hence, in Fig. 4 the ξ phase is shown only as a single line joining the NiSi and PdSi phases. Similarly, the other binary phases that are single composition phases are shown accordingly in Fig. 4, and the location of the binary phase region adjusted according to the accepted binary data. Further work has to be done to determine the phase boundaries and the proper locations of the three-phase and two-phase regions. Because Pd₄Si and Pd₅Si phases do not exist in the accepted Pd-Si system, these phases are not shown in Fig. 4.

Lattice parameters of ρ and ξ phases have been determined as a function of Ni content and are given in Fig. 5 and 6.

The amorphous state of an $Ni_{15}Pd_{65}Si_{20}$ alloy was produced by the piston and anvil technique [1966Tsu]. On heating the amorphous alloy at >20 °C/min, sudden heat evolution of ~1000 cal/g · mole was noticed at 420 °C. Below this temperature the alloy was found to transform by a process of nucleation and growth.

Section II: Phase Diagram Evaluations

References

1966Tsu: C.C. Tsuci and P. Duwez, Metastable Amorphous Ferromagnetic Phases in Pd-Base Alloys, *J. Appl. Phys.*, 1966, **37**, p 435 (Amorphous state)

1976Wop: W. Wopersnow and K. Schubert, Nickel-Palladium-Silicon Alloys, *Z. Metallkd.*, 1976, **67**, p 807-810, in German (Phase equilibria; #¹)

indicates presence of a phase diagram.

Ni-Pd-Si evaluation contributed by **K.P. Gupta**, the Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Program Co-Category Editor for ternary nickel alloys.